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LETTER TO THE EDITOR 

Single-hole dynamics in a coupled-chain model 

Indrani Bose and Saurabh Gayen 
Department of Physics. Bose Institute, 93/1. APC Road, Calcutta 700009, India 

Received 28 April 195'4 

Abstract. The singlehole dynamics in a coupled-chain model described by the 14-3 model 
is studied. The excitation spectrum is  obtained exactly and analytically and shows a mcture 
consisting of bound, antibound and extended states. Based on the exact results obtained, h e  
possibility of a localization-to-delocalization transition for the hole is conjectured. 

In high-T, cuprate superconductors, charge transport in the copper oxide plane occurs 
through the motion of holes in a background of antiferromagnetically interacting spins. 
In this context, several studies [l-51 have been carried out on the dynamics of a single hole 
in a spin background. A single hole, as soon as it starts moving, scrambles the arrangement 
of spins in the ground state. The calculation of its dynamical properties is a non-trivial 
many-body problem due to a competition between two processes: the lowering of the 
kinetic energy of the hole by delocalization and the minimization of the antiferromagnetic 
exchange interaction energy of the background spins. The issues of interest are whether 
a coherent propagation of the hole in a Bloch type of state is possible, the effect of spin 
excitations on the hole dynamics, the nature of the spin configuration in the ground state 
etc. The model Hamiltonian used for such studies is the~well known I-J model. Recently, 
we have derived some exact results for single-hole dynamics in a coupled-chain model 
described by a r-t'-J Hamiltonian [6]. Some of the conclusions arrived at in our paper 
were based on numerical solution of the exact eigenvalue equations for finiwsized systems. 
In this letter, we show that the particular eigenvalue problem can be solved exactly and 
analytically irrespective of the system size. The results obtained correspond to extended hole 
states as well as bound and antibound states of the hole with a localized mplet excitation. 
There is also an indication that a localization-to-delocalization transition occurs for the hole. 

Figure 1. The coupled hvochdn model described by the t-t'-J Hamiltonian (I) .  

Our coupled-chain model consists of two chains, each described by a t-J model, 
coupled by t'-J' interactions between them (figure 1). The model is described by the 
t-J Hamiltonian 

(1) H = - c t i j C $ C j ,  + H C + c J i j S i .  Sj = HI + HI, + H,. 
Lj,o (it) 
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The constraint that no site can be doubly occupied is implied in the model. The hopping 
integral t;j has value t for nearest-neighbour hopping within a chain and also for diagonal 
transfer between chains (solid lines in figure 1). The corresponding spin-spin interactions, 
Jij, are of strength J .  The spins have magnitude i. The hopping integral across vertical 
links (dotted lines) connecting two chains has strength 2’. The corresponding spin-spin 
interaction strength Jij is assumed to be 23 though the exact results derived below hold 
true also for other interaction strengths. In the following, we assume t and t‘ to be positive. 
In the half-filled limit, i.e., in the absence of holes, the t-t’-J Hamiltonian in (1) reduces 
to HJ. The exact ground state Yg of HJ consists of singlets along the vertical bonds with 
energy E,  = -(3J/2)N, where 2N is the number of sites in the system. For J’ > 23, 
the exact ground state i s  still the same; however, for J‘ < 2 J ,  the state, though an exact 
eigenstate, may not be the ground state. We now introduce a single hole into the system. 
Let Y(m) denote a spin configuration when the single hole is located in the mth column of 
the coupled-chain model. 

Y ( m )  = (1P) ’ ’ ’ [*m(P)  + ~ m ( q ) ] .  (2) 

In Y,,,(p) and Ym(q), the hole is located in the top and bottom rows, respectively, on 
the mth column. The other site in the mth column is occupied by an up spin. The spin 
configurations on all the other vertical links are the same as in Yg, namely, singlets. In our 
earlier paper we have shown that the wave function 

is an exact eigenfunction of the total t-J Hamiltonian H with eigenvalue E = 2t cos@) - 
t’-3J/2(N- 1). The periodic boundary condition has been assumed to solve the eigenvalue 
problem. Let Y‘(m) be a single-hole state defined as 

Y’(m) UP)”’[Ym(q)  - Q ~ ( P ) ] .  (4) 

When H, in (1) operates on Y‘(m), the hole accompanied by a free spin $ moves one lattice 
constant, leaving behind a triplet excitation. The states generated are K(m, m & 1) given by 

K(m. m * 1) = (1/~2)”’[Km.&~(P) + K ~ t ~ * r ( q ) ] .  (5) 

The first index m in K ( m ,  m + 1) denotes the location of the triplet excitation, m being 
the column number. The second index in K denotes the location of the column in which 
the hole is present. A pictorial representation of the state K,,, , ,+~(P) is given in figure 2. 
The dashed line denotes the triplet (01,9+ 601) where 01 and denote up and down spins 
respectively. The state ~ ~ . ~ + l ( q )  is obtained from K , , , , ~ + ,  ( p )  by interchanging the hole and 
spin positions in the mth column. The exact eigenvalue equations can be written as 

HY’(~)  = (3J/2 + t’)v’(m) - 3 ’ 4 [ ~ ( m ,  m + I) + K(m, m - I)] (W 
Hx(m, m & 1 ) = ( 5 J / 2 - t ’ ) x ( m ,  m i l ) + r K ( m ,  m ~ ~ ) - 3 “ ’ t ~ ‘ ( m )  (6b) 
H x ( m ,  m f r )  = (7J /2  - t‘)K(m, m i r )  f t[K(m, m f r f. 1) 

(6d + ~ ( m ,  m * r  + l)]. 
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In the earlier paper, a numerical solution of equations (6u-c) was given for finitesized 
systems and only the lowest-energy state was discussed. We now show that the eigenvalue 
spectrum described by the eigenvalue equations can be derived exactly and analytically for 
any value of N. The spectrum consists of both bound and extended states. An eigenfunction 
has the form 

The eigenfunction is either symmetric or antisymmetric with respect to reflection about the 
mth column in which the triplet excitation is located. For an asymmetric state, considering 
N to be even, both the coefficients and U,/Z are zero. 

I 

Figure 2. A p i c t o d  repremtation of the wave function K,,,+I(P) defined in (5). The solid 
lines denote singlets and the dashed line denotes the hiplet (a@ + @U) wiLh Sz = 0 located in 
the mth column. The empty circle denotes the hole located in the (m + 1)th column and Lhe 
vertical m o w  represents a free spin A. 

We first consider the Nagaoka limit J = 0. In this case the eigenvalue equations (6u-c) 
are similar to those for a single hopping electron in a ID chain of atoms with the atom 
number ‘zero’ being an impurity atom. The other atoms are located at positions 1, 2, 3, 
. . . and -1, -2, -3, . . .. The electron can hop from one atom to its nearest neighbours 
witb amplitude t .  The site energy of the impurity atom is different from that of the other 
atoms. The problem has been extensively discussed in the F e y n m  Lectures, vol III [7] 
and provides physical insight for our eigenvalue problem. In our case, the localized triplet 
excitation is the ‘impurity’ atom, the hole accompanied by a free spin-; constitutes the 
propagating object and the singlets along the vertical links are the ‘other atoms’ of the 
lattice. In terms of the Coefficients ao, U, (the coefficients U N - I ,  UN-2,  . . ., UN-(N,Z-I)  are 
redesignated as & I ,  U-2, . . ., u- (N /~ - I )  with U - N ~ Z  = a N / 2 )  the eigenvalue equations (6u-c) 
reduce to the equations 
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For J = 0 we illustrate the 'impurity atom' analogy by deriving the eigenfunctions and 
eigenvalues for the antisymmetric case. The triplet excitation located at the zeroth position 
acts as a scatterer, so an incident wave coming from, say, the left may be scattered 
backwards. We can choose the following forms for the coefficients a,: 

The wave is incident from the left and j3, y are the respective amplitudes with which 
the wave is scattered backwards or is transmitted in the forward direction. The equations 
involving the coefficients a, with n 6 -1 and n > 1 are all satisfied by (9) with the 
condition that k is related to E by (the lattice spacing is assumed to be unity) 

E = --t' + 2.t COs(k). (10) 

By using the formulae for a-, and a+l from (S), the three middle equations in (8) allow us 
to solve for a0 and also for the two coefficients j3 and y .  One finds that 

- 3'i2a0 = I + p = y. 

For antisymmetric eigenfunctions, ao = 0, so j3 = -1, i.e., y = 0. Thus the 'impurity 
atom' gives rise to perfect backward scattering and hence zero transmission. The coefficient 
a, is given by 

a, - sin(kx,) (xn = n). 

For antisymmetric solution ax12 = 0, i.e., k = 2mrrjN where m is an integer. The energy 
is given by (10). The 'impurity' analogy can further be extended to the case of symmetric 
solutions as well as bound states. We, however, consider the general case J f 0 when we 
have impurities at sites 0, 1 and -1. It is more convenient now to solve the eigenvalue 
problem directly. In the following, we quote the final results for the eigenfunctions and 
eigenvalues. As mentioned before, the eigenfunctions are either symmetric or antisymmetric. 

In the symmetric case 

a,, = cos(k(N/Z - n))  

a-. = cos(k(-N/2 + n)) = a,, . 
The eigenvalues E(= E - 7 J / 2  + t') are obtained by simultaneously solving the equations 

( IZa)  E + J = & / [ E  + 2(J  - t')] + tcos(k(N/2 - 2))/cos(k(N/2 - 1)) 

and 

E = Ztcos(k). (12b) 

One can easily verify that a, given by (11) satisfies the eigenvalue equations for n > 2 
with eigenvalue given by (1%). The other eigenvalue condition (12a) is obtained from the 
eigenvalue equations for a0 and a1 with a1 and a-1 given by (11). The antibound state 
eigenfunctions and eigenvalues are obtained from (11) and (12) by making k imaginary. 



Letter to the Editor L4w 

The energy of the antibound state is greater than the highest energy of the extended states. 
The bound state eigenfunctions and eigenvalues are described by equations of types (1 I) 
and (12) with k made imaginary along with a real phase shift of n. The energy of the 
bound states is lower than the lowest energy of the extended states. 

In the antisymmetric case 

a, = sin(k(N/Z - n)). (13) 

The eigenvalues are obtained by simultaneously solving the equations 

E i J = t sin(k(N/i - 2)) /s in(k(~/2 - 1)) (144 

E = 2t cos(k). (146) 

There is no antibound state. The bound state~eigenfunctions and eigenvalues are obtained 
from (13) and (14) by making the same changes as in the symmetric case. The total number 
of bound and antibound states is at most three. For values of J large compared to t and t’, 
all three states are bound states. In all parameter regimes a bound, state always exists. 

For small J / t ,  the bound state energy is lower than not only the extended state energies 
corresponding to the eigenvalue problem defined by (6a-c) but also the lowest energy of 
the band of coherent propagating states described by (3). For example, for J = 0 and 
t’ = t, the bound state has an energy -3.13959 for N = 22. In this limit, the lowest energy 
corresponding to iP in (3) is -3. The lowest energy for a ferromagnetic arrangement of 
spins is also - 3. We have not been able to find any extended state with energy lower 
than -3. The lowest possible theoretical bound, obtained from the spectrum of a single 
electron in an empty lattice, is - 5 but, due to the frustrated topology of the coupled-chain 
model, the lowest energy is expected to be above the theoretical bound. Since the bound 
state describes a localized wave function of the hole and appears to be the lowest-energy 
state for small J / t  (0 < J/t < 0.05), the ground state of the hole in this parameter 
regime is localized. For J / t  > 0.05, there is a localization-to-delocalization transition 
when the extended state has lower energy. The localization of the hole in our case is 
caused by spin fluctuation (%e triplet excitation). This has been exactly demonstrated in 
our model and suggests the possible mechanism of hole localization that occurs in cuprate 
superconductors for small dopant concentrations. The localization of the hole has also 
been shown to take place in the string picture developed by Sbraiman and Siggia [SI for 
the conventional t - J model. A hole is introduced into a perfect N8el background of 
spins, which is the ground state of the king model. In this case, the hole distorts the spin 
background when it moves, creating a ‘string’ of overturned spins. At least for small J z ,  
it is possible to write an effective Hamiltonian for the hole that describes a non-relativistic 
particle in a linear confining potential. The eigenfunctions are Airy functions and are 
localized. If quantum fluctuations are included, the strings may be erased, giving rise to 
coherent quasiparticle propagation, and the autolocalization of the hole breaks down. In the 
case of our model, the effect of quantum fluctuations has been calculated exactly and one 
always finds the existence of a bound state. The existence of antibound states has also been 
exactly shown. Such states possibly give rise to the ‘midgap’ states of which the existence 
has been conjectured [9] for cuprate superconductors. 

To sum up, for our coupled-chain model it is possible to treat the effects of strong 
correlation and quantum fluctuations, both key ingredients in the hole dynamics of cuprate 
systems, exactly. The exact analytical results for the excitation spectrum show interesting 
structure consisting of bound, antibound and extended states. The possibility of a 
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localization-to-delocalization transition has been conjectured. The problem of more than 
one hole in our coupled-chain model will be discussed elsewhere. 

One of the authors (SG) is supported by the Council of Scientific and Industrial Research, 
India under sanction No 9/15(103)/92-EMR-l. 
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